1.

If is a vector and m is a scalar such that m \(\vec a\) = \(\vec 0\), then what are the alternatives for m and \(\vec a\)?

Answer»

Given  \(\vec a\)is a vector and m is a scalar such that m\(\vec a\) = \(\vec 0\)

Let \(\vec a\) = \(a_1\hat i+b_1\hat j + c_1\hat k\) 

then according to the given question

m\(\vec a\) = \(\vec 0\)

⇒ \(m(a_1\hat i+b_1\hat j+c_1\hat k)\) = \(0\hat i+0\hat j+0\hat k\)

⇒ \((ma_1\hat i+mb_1\hat j+mc_1\hat k)\) = \(0\hat i+0\hat j+0\hat k\)

Compare the coefficients of \(\hat i, \hat j,\hat k\), we get

ma1 = 0 ⇒ m = 0 or a1 = 0

Similarly, mb1 = 0 ⇒ m = 0 or b1 = 0

And, mc1 = 0 ⇒ m = 0 or c1 = 0

From the above three conditions,

m = 0 or a1 = b1 = c1 = 0

⇒ m = 0 or \(\vec a\) = \(a_1\hat i+b_1\hat j + c_1\hat k\) = \(0\hat i+0\hat j+0\hat k\) = 0

Hence the alternatives for m and \(\vec a\) are m = 0 or  \(\vec a\) = 0



Discussion

No Comment Found

Related InterviewSolutions