 
                 
                InterviewSolution
| 1. | If is a vector and m is a scalar such that m \(\vec a\) = \(\vec 0\), then what are the alternatives for m and \(\vec a\)? | 
| Answer» Given \(\vec a\)is a vector and m is a scalar such that m\(\vec a\) = \(\vec 0\) Let \(\vec a\) = \(a_1\hat i+b_1\hat j + c_1\hat k\) then according to the given question m\(\vec a\) = \(\vec 0\) ⇒ \(m(a_1\hat i+b_1\hat j+c_1\hat k)\) = \(0\hat i+0\hat j+0\hat k\) ⇒ \((ma_1\hat i+mb_1\hat j+mc_1\hat k)\) = \(0\hat i+0\hat j+0\hat k\) Compare the coefficients of \(\hat i, \hat j,\hat k\), we get ma1 = 0 ⇒ m = 0 or a1 = 0 Similarly, mb1 = 0 ⇒ m = 0 or b1 = 0 And, mc1 = 0 ⇒ m = 0 or c1 = 0 From the above three conditions, m = 0 or a1 = b1 = c1 = 0 ⇒ m = 0 or \(\vec a\) = \(a_1\hat i+b_1\hat j + c_1\hat k\) = \(0\hat i+0\hat j+0\hat k\) = 0 Hence the alternatives for m and \(\vec a\) are m = 0 or \(\vec a\) = 0 | |