1.

If K = {a, b, d, e,f}, L = {b, c, d, g} and M = {a, b, c, d, h} then find the following:(i) K ∪ (L ∩ M)(ii) K ∩ (L ∪ M)(iii) (K ∪ L) ∩ (K ∪ M)(iv) (K ∩ L) ∪ (K ∩ M) and verify distributive laws.

Answer»

K = {a, b, d, e, f}, L = {b, c, d, g} and M = {a, b, c, d, h}

(i) K ∪ (L ∩ M)

L ∩ M = {b, c, d, g} ∩ {a, b, c, d, h} = {b, c, d}

K ∪ (L ∩ M) = {a, b, d, e, f } ∪ {b, c, d) = {a, b, c, d, e, f}

(ii) K ∩ (L ∪ M)

L ∪ M = {a, b, c, d, g, h}

K ∩ (L ∪ M) = {a, b, d, e, f} ∩ {a, b, c, d, g, h} = {a, b, d}

(iii) (K ∪ L) ∩ (K ∪ M)

K ∪ L = {a, b, c, d, e, f, g}

K ∪ M = {a, b, c, d, e, f, h}

(K ∪ L) ∩ (K ∪ M) = {a, b, c, d, e,f}

(iv) (K ∩ L) ∪ (K ∩ M)

(K ∩ L) = {b, d}

(K ∩ M) = {a,b,d}

(K ∩ L) ∪ (K ∩ M) = {b, d} ∪ {a, b, d} = {a, b, d}

Distributive laws

K ∪ (L ∩ M) = (K ∪ L) ∩ (K ∪ M)

{a, b, c, d, e, f) = {a, b, c, d, e, f, g} ∩ {a, b, c, d, e, f, h}

= {a, b, c, d, e, f}

Thus Verified.

K ∩ (L ∪ M) = (K ∩ L) ∪ (K ∩ M)

{a, b, d} = {a, b, c, d, e, f, g} ∪ {a, b, c, d, e, f, h}

= {a, b, d}

Thus Verified.



Discussion

No Comment Found