InterviewSolution
Saved Bookmarks
| 1. |
If Lim_(xto oo) "sin"((pi(1-cos^(m)x))/(x^(n))) exists and non-zero where m,n in N then |
|
Answer» m=1 , n=1 `UNDERSET(NTO oo)Lim"SIN"((pi(1-cosx))/(x))=sin0=0` When m=1 , n=2 `underset(nto oo)Lim"sin"((pi(1-cosx))/(x^(2)))=sin(pi//2)=1` When m=n=2 `underset(nto oo)Lim"sin"((pi(1-cos^(2)x))/(x^(2)))=underset(nto oo)Lim"sin"((pi(1-cosx)(1+cosx))/(x^(2)))=sin(pi)=0` When m=3 , n=2 `underset(nto oo)Lim"sin"((pi(1-cos^(3)x))/(x^(2)))=underset(nto oo)Lim"sin"((pi(1-cosx)(1+cos^(2)x+cosx))/(x^(2)))=sin((3PI)/(2))=-1` |
|