InterviewSolution
Saved Bookmarks
| 1. |
if `log 15` base 16 =a and log 18 base 12 = b then show that log 24 base 25 = (5-b)/(16a - 8ab -4b +2 ) |
|
Answer» `(log_2^15/log_2^16) =a` `(log_2^3+log_2^5)/4=a` `(log_2^18/log_2^12)=b` `(3log_2^3+1)/(2+log_2^3)=b` `(log_2^24/log_2^25)=(log_2^8+log_2^3)/(2log_2^5)=(3+log_2^3)/(2(4a-log_2^3)` `log_2^3=t` `(3+t)/(2(4a-t))` `(3+(2b-1)/(2-b))/(2(4a-(2b-1)/(2-b))` `((6-3b+2b-1)/(2-b))/((8a-4ab-2b+1)/(2-b))` `(5-b)/(16a-8ab-4b+2)`. |
|