| 1. |
If \( \log _{2}\left(a x^{2}+x+a\right) \geq 1 \forall x \in R \), then exhaustive set of values of ' \( a \) ' is: |
|
Answer» \(log_2 (ax^2 + x +a) \ge 1\) ⇒ \(ax^2 + x +a \ge 2^1\) ⇒ \(ax^2 +x +a -2 \ge 0\) Then \(\triangle \le 0\) \(b^2 - 4ac \le 0\) ⇒ \(1 - 4\times a \times (a -2)\le 0\) ⇒ \(4a^2 - 8a \ge 1\) ⇒ \(4a^2 - 8a -1 \ge 0\) ⇒ \(a \in \left(- \infty , \frac{2-\sqrt5}{2}\right] \cup \left[\frac{2 + \sqrt5}{2}, \infty\right)\) ........(1) Also to defined log function, we have \(ax^2 + x +a > 0\) \(\therefore D < 0\) ⇒ \(b^2 - 4ac <0\) ⇒ \(1 - 4 \times a \times a <0\) ⇒ \(4a^2 >1\) ⇒ \(a \in \left(- \infty , \frac12\right)\cup \left(\frac12, \infty\right)\) ......(2) From (1) & (2), we have \(a \in \left(\left(- \infty , \frac{2-\sqrt5}{2}\right] \cup \left[\frac{2 + \sqrt5}{2}, \infty\right)\right)\cup\left(\left(- \infty , \frac{2-\sqrt5}{2}\right] \cup \left[\frac{2 + \sqrt5}{2}, \infty\right)\right)\) ⇒ \(a \in \left(- \infty , \frac{-1}2\right)\cup \left(\frac{2+\sqrt5}{2}, \infty\right)\). |
|