InterviewSolution
Saved Bookmarks
| 1. |
If `m, n in I_(0)` and `lim_(xto0) (tan2x-nsinx)/(x^(3))` = some integer, then find the value of n and also the value of limit. |
|
Answer» `L=underset(xto0)lim(tan2x-nsinx)/(x^(3))` `underset(xto0)lim(sin2x-nsinxcos2x)/(x^(3)cos2x)` `=underset(xto0)lim("sin"x)/(x)((2cosx-ncos2x))/(x^(2))=(1)/(cos2x)` `=underset(xto0)lim((2cosx-ncos2x))/(x^(2))` Now, for `xto0`,`x^(2)to0`. Therefore, for `xto0, 2cosx-ncos2xto0.` So, n=2. For, n=2. `L=underset(xto0)lim((2cosx-ncos2x))/(x^(2))` `=4underset(xto0)lim("sin"(x)/(2)"sin"(3x)/(2))/(x^(2))` =3 |
|