1.

If mean of squares of deviations of a set of n observations about -2 and 2 are 18 and 10 respectively, then standard deviation of this set of observations is

Answer» `sum(x_i-22)^2/N`
`sum(x_i+2)^2/N=18-(1)`
`sum(x_i-2)^2/N=10-(2)`
`sum(x_i^2+4+4x_i)=18N`
`sumx_i^2+sum4+4sumx_i=18N`
`sumx_i^2+4sumx_i=14N-(3)`
`sumx_1^2+4N-4sumx_i=10N`
`sumx_i^2-4sumx_i=6N-(4)`
adding equation 3 and 4
`2sumx_i^2=20N`
`sumx_i^2=10N`
subtracting equation 2 from 3
`8sumx_i=8N`
`sumx_i=N`
`sumx_1/N=1`
`SD=sqrt(sum(x_i-x)^2/N)`
`=sum(x_i-mu)^2/N`
`=sum(x_i^2+mu^2-2x_imu)/N`
`=(11N-2N)/N=9N/N=9`
square of standard deviation=9
standard deviation=3.


Discussion

No Comment Found

Related InterviewSolutions