Saved Bookmarks
| 1. |
If n _(1), n _(2), and n _(3)are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency n of the string is given by … |
|
Answer» `(1)/(n) = (1)/( n _(1)) + (1)/( n _(2)) + (1)/(n _(3))` (1) For FIRST PART of length `L_(1) , n _(1) = (1)/(2L_(1)) sqrt((T)/(mu))` (2) For second part of length `l _(2), n _(2) = (1)/(2L _(2)) sqrt ((T)/( mu))` (3) For the part of length `L_(3), n_(3) = (1)/(2L _(3)) sqrt ((T)/(mu))` But `L = L _(1) + L _(2) + L _(3)` `therefore (1)/(2N ) sqrt ((T)/( mu)) = (1)/( 2n _(1)) sqrt ((T)/( mu ))+ (1)/( 2n _(2)) sqrt ((T)/( mu )) + (1)/( 2n _(3)) sqrt ((T)/( mu ))` `therefore (1)/(n) = (1)/( n _(1) )+ (1)/(n _(2)) + (1)/( n _(3))` |
|