1.

If n _(1), n _(2), and n _(3)are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency n of the string is given by …

Answer»

`(1)/(n) = (1)/( n _(1)) + (1)/( n _(2)) + (1)/(n _(3))`
`(1)/(sqrtn) =(1)/(sqrt n _(1)) + (1)/(sqrt(n _(2))) + (1)/( sqrt (n _(3)))`
`sqrtn =sqrt (n _(1)) + sqrt (n _(2)) + sqrt (n _(3))`
`n = n _(1) + n_(2) + n _(3)`

Solution :For given STRING of length, `L, n = (1)/(2L) sqrt ((T)/(MU))`
(1) For FIRST PART of length `L_(1) , n _(1) = (1)/(2L_(1)) sqrt((T)/(mu))`
(2) For second part of length `l _(2), n _(2) = (1)/(2L _(2)) sqrt ((T)/( mu))`
(3) For the part of length `L_(3), n_(3) = (1)/(2L _(3)) sqrt ((T)/(mu))`
But `L = L _(1) + L _(2) + L _(3)`
`therefore (1)/(2N ) sqrt ((T)/( mu)) = (1)/( 2n _(1)) sqrt ((T)/( mu ))+ (1)/( 2n _(2)) sqrt ((T)/( mu )) + (1)/( 2n _(3)) sqrt ((T)/( mu ))`
`therefore (1)/(n) = (1)/( n _(1) )+ (1)/(n _(2)) + (1)/( n _(3))`


Discussion

No Comment Found