InterviewSolution
Saved Bookmarks
| 1. |
If `""^(n)C_(0), ""^(n)C_(1),..., ""^(n)C_(n) ` denote the binomial coefficients in the expansion of `(1 + x)^(n) and p + q = 1` , then ` sum_(r=0)^(n) ""r.^(n)C_(r) p^(r) q^(n-r) = `A. nB. npC. npqD. none of these |
|
Answer» Correct Answer - b (i) We have, `sum_(r=1)^(n) r. ""^(n)C_(r) p^(r)q^(n-r)` ` sum_(r=1)^(n)r.(n)/(r)""^(n-1)C_(r-1) p.p^(r-1)q^((n-1)-(r -1))` ` = np {sum_(x=1)^(n) ""^(n-1)C_(r-1) p^(r - 1) q^((n-1)-(r-1))}` ` = np (q + p)^(n-1) [ because (q + p)^(n) = sum _(r=0)^(n) ""^(n) C_(r)p^(r) q^(n-r)]` `= np [ because p + q = 1]` . |
|