InterviewSolution
Saved Bookmarks
| 1. |
If n is a positive odd integer, then `int |x^n| dx=`A. `|(x^(n+1))/(n+1)|+C`B. `(x^(n+1))/(n+1)+C`C. `(|x^(n)|)/(n+1)+C`D. none of these |
|
Answer» Correct Answer - c We have the following cases : CASE I When `xge0` In this case , we have , `int|x^(n)|dx=int|x|^(n)dx` `rArrint|x^(n)|dx=intx^(n)dx " " [because|x|=x]` `rArrint|x^(n)|dx=(x^(n+1))/(n+1)+C` `rArrint|x^(n)|dx=(|x|^(n)x)/(n+1)+C " " [becausexge0therefore|x|=x]` CASE II When ` xle0` In this case , we have `|x| =-x` `thereforeint|x^(n)|dx= int|x|^(n)dx=int (-x)^(n)dx` `rArrint|x^(n)|dx=-intx^(n)dx " " [because n is odd"]` `rArrint|x^(n)|dx=-(x^(n)+1)/(n+1)+C` `rArr int|x^(n)|dx=((-x)^(n)x)/(n+1)+C " " [{:(because " n is odd",),(therefore(-x)^(n)=-x^(n),):}]` `rArrint|x^(n)|dx=(|x|^(n)x)/(n+1)+C` Hence , `int|x^(n)|dx=(|x|^(n)x)/(n+1)+C` |
|