InterviewSolution
Saved Bookmarks
| 1. |
If n. `sin(A+2B)=sinA`, then prove that: `tan(A+B)=(1+n)/(1-n).tanB` |
|
Answer» `nsin(A+2B)=sinA` `rArr n=(sinA)/(sin(A+2B))` `therefore` RHS `=(1+n)/(1-n).tanB=(1+(sinA)/(sin(A+2B)))/(1-(sinA)/(sin(A+2B))).tanB` `(sin(A+2B)+sinA)/(sin(A+2B)-sinA).tanB` `=(2sinA(A+2B+A)/(2)cos(A+2B-A)/(2))/(2cos(A+2B+A)/(2)sin(A+2B-A)/(2)).tanB` `=(sin(A+B)cosBsinB)/(cos(A+B)sinBcosB)` `=tan(A+B)`=LHS Hence Proved. |
|