1.

If (n2–n)C2 = (n2–n)C4 = 120 then find the value of n.

Answer»

Given: (n2–n)C2 = (n2–n)C4 = 120

Need to find: Value of n 

(n2–n)C2 = (n2–n)C4 = 120

We know,

One of the property of combination is: If nCr = nCt, then,

(i) r = t OR

(ii) r + t = n

Applying property

(ii) we get, n2 – n = 2 + 4 = 6

n2 – n – 6 = 0

n2 – 3n + 2n – 6 = 0

n(n – 3) + 2(n – 3) = 0

(n – 3) (n + 2) = 0

So, the value of n is either 3 or -2.



Discussion

No Comment Found