InterviewSolution
Saved Bookmarks
| 1. |
If O be the origin and `A(x_(1), y_(1)), B(x_(2), y_(2))` are two points, then what is `(OA) (OB) cos angle AOB` ?A. `x_(1)^(2)+x_(2)^(2)`B. `y_(1)^(2)+y_(2)^(2)`C. `x_(1)x_(2)+y_(1)y_(2)`D. `x_(1)y_(1)+x_(2)y_(2)` |
|
Answer» Correct Answer - C Let `O(0, 0), A(x_(1), y_(1))` and `B(x_(2), y_(2))` be three points `OA=sqrt(x_(1)^(2)+y_(1)^(2)), OB=sqrt(x_(2)^(2)+y_(2)^(2))` `AB=sqrt((x_(2)-x_(1))^(2)+(y_(2)-y_(1))^(2))` In `Delta AOB`, `s` `cos angle AOB=(OA^(2)+OB^(2)-AB^(2))/(2.OA.OB)` `implies OA.OB cos angle AOB=(OA^(2)+OB^(2)-AB^(2))/2` `=(x_(1)^(2)+y_(1)^(2)+x_(2)^(2)+y_(2)^(2)-{(x_(2)-x_(1))^(2)+(y_(2)-y_(1))^(2)})/2` `implies OA.OB. cos angle AOB` `=(x_(1)^(2)+y_(1)^(2)+x_(2)^(2)+y_(2)^(2)-{x_(2)^(2)+x_(1)^(2)-2x_(1)x_(2)+y_(2)^(2)+y_(1)^(2)-2y_(1)y_(2)})/2` `=(2(x_(1)x_(2)+y_(1)y_(2)))/2=x_(1)x_(2)+y_(1)y_(2)` |
|