1.

If P (11, r) = P (12, r – 1), find r.

Answer»

Given as 

P (11, r) = P (12, r – 1)

On using the formula,

P (n, r) = n!/(n – r)!

P (11, r) = 11!/(11 – r)!

P (12, r-1) = 12!/(12 – (r-1))!

= 12!/(12 – r + 1)!

= 12!/(13 – r)!

Therefore, from the question,

P (11, r) = P (12, r – 1)

On substituting the obtained values in above expression we get,

11!/(11 – r)! = 12!/(13 – r)!

Now, upon evaluating,

(13 – r)! / (11 – r)! = 12!/11!

[(13 – r) (13 – r – 1) (13 – r – 2)!] / (11 – r)! = (12×11!)/11!

[(13 – r) (12 – r) (11 -r)!] / (11 – r)! = 12

(13 – r) (12 – r) = 12

156 – 12r – 13r + r2 = 12

156 – 12 – 25r + r2 = 0

r2 – 25r + 144 = 0

r2 – 16r – 9r + 144 = 0

r(r – 16) – 9(r – 16) = 0

(r – 9) (r – 16) = 0

r = 9 or 16

For, P (n, r): r ≤ n

∴ r = 9 [for, P (11, r)]



Discussion

No Comment Found

Related InterviewSolutions