InterviewSolution
| 1. |
If P(2n – 1, n) : P(2n + 1, n – 1) = 22 : 7 find n. |
|
Answer» Given as P(2n – 1, n) : P(2n + 1, n – 1) = 22 : 7 P(2n – 1, n) / P(2n + 1, n – 1) = 22/7 On using the formula, P (n, r) = n!/(n – r)! P (2n – 1, n) = (2n – 1)! / (2n – 1 – n)! = (2n – 1)! / (n – 1)! P (2n + 1, n – 1) = (2n + 1)! / (2n + 1 – n + 1)! = (2n + 1)! / (n + 2)! Therefore, from the question, P(2n – 1, n) / P(2n + 1, n – 1) = 22/7 On substituting the obtained values in above expression we get, [(2n – 1)! / (n – 1)!] / [(2n + 1)! / (n + 2)!] = 22/7 [(2n – 1)! / (n – 1)!] × [(n + 2)! / (2n + 1)!] = 22/7 [(2n – 1)! / (n – 1)!] × [(n + 2) (n + 2 – 1) (n + 2 – 2) (n + 2 – 3)!] / [(2n + 1) (2n + 1 – 1) (2n + 1 – 2)] = 22/7 [(2n – 1)! / (n – 1)!] × [(n + 2) (n + 1) n(n – 1)!] / [(2n + 1) 2n (2n – 1)!] = 22/7 [(n + 2) (n + 1)] / (2n + 1)2 = 22/7 7(n + 2) (n + 1) = 22×2 (2n + 1) 7(n2 + n + 2n + 2) = 88n + 44 7(n2 + 3n + 2) = 88n + 44 7n2 + 21n + 14 = 88n + 44 7n2 + 21n – 88n + 14 – 44 = 0 7n2 – 67n – 30 = 0 7n2 – 70n + 3n – 30 = 0 7n(n – 10) + 3(n – 10) = 0 (n – 10) (7n + 3) = 0 n = 10, -3/7 ∴ The value of n is 10. ।।।।।।।।।।।।।। |
|