1.

If p(A) = \(\frac{1}{3}\), P(B) = \(\frac{2}{3}\) and P(A ∩ B) = \(\frac{1}{6}\), then find P(A’ ∩ B’).

Answer»

According to the law of addition of probability,
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

\(\frac{1}{3}+\frac{2}{3}-\frac{1}{6}\)

\(\frac{2+4−1}{6}\)

\(\frac{5}{6}\)

Now, P(A’ ∩ B’) = P(A ∪ B)’

= 1 – P(A ∪ B)

= \(1 – \frac{5}{6}\)

\(\frac{6−5}{6}\)

\(\frac{1}{6}\)



Discussion

No Comment Found

Related InterviewSolutions