

InterviewSolution
Saved Bookmarks
1. |
If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/(p^2)=1/(a^2)+1/(b^2)`. |
Answer» The equation of the line making intercepts a and b on the axes is given by `(x)/(a)+(y)/(b)=1, i.e. (x)/(a)+(y)/(b)=1=0.....(i)` Since p is the length of the perpendicular from O(0,0) to line (i), we have `p=(|(1)/(a)xx0+(1)/(b)xx0-1|)/(sqrt((1)/(a^(2))+(1)/(b^(2))))=(|-1|)/(sqrt((1)/(a^(2))+(1)/(b^(2))))=-(1)/(sqrt((1)/(a^(2))+(1)/(b^(2))))` `Rightarrow p^(2)=(1)/(((1)/(a^(2))+(1)/(b^(2))))=(a^(2)b^(2))/((b^(2)+a^(2)))` `Rightarrow (1)/(p^(2))=((b^(2)+a^(2)))/(a^(2)b^(2))=((b^(2))/(a^(2)b^(2))+(a^(2))/(a^(2)b^(2)))=((1)/(a^(2))+(1)/(b^(2)))` `"Hence"(1)/(p^(2))=(1)/(a^(2))+(1)/(b^(2))` |
|