1.

If `P` represents radiation pressure , `C` represents the speed of light , and `Q` represents radiation energy striking a unit area per second , then non - zero integers `x, y, z` such that `P^(x) Q^(y) C^(z)` is dimensionless , find the values of `x, y , and z`.

Answer» `[ P^(x) Q^(y) C^(z)] = M^(0) L^(0) T^(0)`
Substituting the dimension of each quantity in the given expression ,
`[ML^(-1) T^(-2)]^(x) [MT^(-3)]^(y) [LT^(-1)]^(z) = [ M^(x+y) L^(-x + z) T^(-2x - 3y -z)] = M^(0) L^(0)T^(0)`
By equating the power of `M , L , and T `on both sides , we get
` x + y = 0 , -x + z = 0 , and -2x -3y -z = 0`
By solving , we get ` x = 1, y = -1 , and z =1`.


Discussion

No Comment Found

Related InterviewSolutions