InterviewSolution
Saved Bookmarks
| 1. |
If p=(sinA)/(sinB) and q=(cos A)/(cos B) |
|
Answer» Solution :`p=(sinA)/(sinB)` and `therefore p/q=(sinA//sinB)/(cosA//COSB)= (sinA)/(sinB).(cosB)/(sinB)` `=tanA. cotB=tanA. 1/(TANB)=(tanA)/(tanB)` `RARR (tanA)/p = (tanB)/(q)=k` (say) `rArr tanA=p.k` and `tan B=q.k` Now `(sinA)/(sinB)=p` `rArr sinA=sinB` `rArr (sinA)/(cosA. secA)= (p.sinA)/(cosB.secB)` `rArr (tanA)/(sqrt(sec^(2)A))= (p.tanB)/(sqrt(sec^(2)B))` `rArr (tanA)/(sqrt(1+tan^(2)A))= (ptanB)/(sqrt(sec^(2)B))` `rArr (tanA)/(sqrt(1+tan^(2)A))=(ptanB)/(sqrt(1+tan^(2)B))` `rArr (pk)/(sqrt(1+p^(2)k^(2)))= (p.qk)/(sqrt(1+q^(2)k^(2)))` `rArr sqrt(1+q^(2)k^(2))=qsqrt(1+p^(2)k^(2))` `rArr 1+q^(2)k^(2)=q^(2)(1+p^(2)k^(2))` `= q^(2)+p^(2)q^(2)k^(2)` `rArr q^(2)k^(2)(1-p^(2))=q^(2)-1` `rArr k^(2)=(q^(2)-1)/(q^(2)(1-p^(2))` `rArr k= +-1/qsqrt((q^(2)-1)/(1-p^(2)))` `therefore tan A = +- p/q sqrt((q^(2)-1)/(1-p^(2)))` and `tan B=+-sqrt((q^(2)-1)/(1-p^(2)))`Ans. |
|