

InterviewSolution
Saved Bookmarks
1. |
If `P(x ,y ,z)`is a point on the linesegment joining `Q(2,2,4)a n d R(3,5,6)`such that the projectionsof ` vec O P`on te axes are 13/5, 19/5and 26/5, respectively, then find the ratio in which `P`divides `Q Rdot` |
Answer» Since `vec(OP)` has projections `(13)/(5), (19)/(5) and (26)/(5)` on the coordinates axes, `vec(OP)=(13)/(5)hati+(19)/(5)hati+(26)/(5)hatk`. Suppose P divides the join of `Q(2, 2, 4) and R(3, 5, 6)` in the ratio `lamda:1`. Then the position vector of P is `" "((3lamda+2)/(lamda+1))hati+((5lamda+2)/(lamda+1))hatj+((6lamda+4)/(lamda+1))hatk` `therefore" "(13)/(5)hati+(19)/(5) hatj+(26)/(5) hatk` `" "((3lamda+2)/(lamda+1))hati+((5lamda+2)/(lamda+1))hatj+((6lamda+4)/(lamda+1))hatk` Thus, we have `" "(3lamda+2)/(lamda+1)=(13)/(5), (5lamda+2)/(lamda+1)=(19)/(5) and (6lamda+4)/(lamda+1)=(26)/(5)` `rArr" "2lamda=3 or lamda = 3//2` Hence, P divides QR in the ratio 3 : 2. |
|