1.

If `phi(x)=lim_(x->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n))` then which of the following is correctA. `phi (x)=g(x) "for all"x in R`B. `phi (x)=f(x)"for all" x in R `C. `phix={(g(x)"for" -1ltxlt1,,),(f(x)"for"|x|ge1,,):}`D. `phix={(g(x)"for" |x|lt1,,),(f(x)"for"|x|gt1,,),((f(x)+g(x))/(2)"for"|x|=1,,):}`

Answer» Correct Answer - D
We have,
`lim_(xtooo)x^(2n)={(0if|x|lt1,,),(ooif|x|gt1,,),(1if|x|=1,,):}`
Thus, we have the following cases: ,Brgt CASE I When `-1lt x lt 1`
In this case, we have `lim_(x^2n=0`.
` therefore phi(x)=lim_(nto oo) (x^2nf(x)+g(x))/(1+x^2x)=g(x)`
CASE II When `|x|gt 1`
In this case, we have `lim_(nto oo) (1)/(x^2n)=0`
`therefore phi(x)=lim_(xtooo) (x^2nf(x)+g(x))/(1+x^2n)`
`rArr phi(x)=lim_(xtooo) (f(x)+(g(x))/(x^(2n)))/(1+(1)/(x^(2n)))=(f(x)+0)/(1+0) =f(x)`
CASE III When `|x|=1`
In this case, we have `x^(2n)=1`.
`therefore phi(x)=(f(x)+g(x))/(2)` .


Discussion

No Comment Found