InterviewSolution
Saved Bookmarks
| 1. |
If r le s le n, then prove that .^(n)P_(s) is divisible by .^(n)P_(r). |
|
Answer» Solution :`.^(N)P_(r) = (n!)/((n-r)!)` `=n (n-1) (n-2)... (n-r+1)` `.^(n)P_(s) = (n!)/((n-s)!)` `= n(n-1)(n-2) ...(n-r+1)` `(n-r) ...(n-s+1) ( :' r le s)` Now `(.^(n)P_(s))/(.^(n)P_(r)) = (n-r) (n-r-1).......(n-s+1)` = a positive INTEGER. `:. .^(n)P_(s)` is DIVIDED by `.^(n)P_(r)` Hence PROVED. |
|