InterviewSolution
| 1. |
If \(\rm \cot\left[\tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)}\right] = 1\), then1. a = \(\rm y\over x\)2. a = \(\rm x\over y\)3. a = \(\rm x-y\over x\)4. a = \(\rm x+y\over x-y\) |
|
Answer» Correct Answer - Option 2 : a = \(\rm x\over y\) Concept: Inverse trigonometric identity
Calculation: S = \(\rm \cot\left[\tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)}\right] = 1\) ⇒ \(\rm \cot\left[\tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)}\right] = \cot45\) (∵ cot 45 =1) Taking cot-1 on both sides ⇒ \(\rm \cot^{-1}\cot\left[\tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)}\right] = \cot^{-1}(\cot45)\) ⇒ \(\rm \tan^{-1}{a} - \tan^{-1}{\left({x-y\over x+y}\right)} = 45\) ⇒ \(\rm \tan^{-1}\left[{a - {\left({x-y\over x+y}\right)}\over1+a\times{\left({x-y\over x+y}\right)}}\right] = 45\) Taking tan on both sides ⇒ \(\rm \tan \tan^{-1}\left[{a - {\left({x-y\over x+y}\right)}\over1+a{\left({x-y\over x+y}\right)}}\right] = \tan45\) ⇒ \(\rm {a - {\left({x-y\over x+y}\right)}\over1+a{\left({x-y\over x+y}\right)}} = 1\) ⇒ \(\rm {a - {\left({x-y\over x+y}\right)}=1+a{\left({x-y\over x+y}\right)}}\) ⇒ \(\rm {a {\left(1-{x-y\over x+y}\right)}=1+{\left({x-y\over x+y}\right)}}\) ⇒ a(x + y - (x - y)) = x + y + x - y ⇒ 2ya = 2x ⇒ a = \(\boldsymbol{\rm x\over y}\) |
|