InterviewSolution
| 1. |
If \(\rm x+y=\frac{\pi}{4}\), then the value of (1 + tan x)(1 + tan y) is: |
||||||||
|
Answer» Correct Answer - Option 3 : 2 Concept: Trigonometric Identities: \(\rm \tan(A\pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}\).
Calculation: Given that \(\rm x+y=\frac{\pi}{4}\). ⇒ \(\rm \tan(x+y)=\tan \frac{\pi}{4}\) ⇒ \(\rm \frac{\tan x + \tan y}{1 -\tan x \tan y}=1\) ⇒ tan x + tan y = 1 - tan x tan y ... (1) Now, (1 + tan x)(1 + tan y) = 1 + tan y + tan x + tan x tan y Using the value in equation (1), we get: = 1 + 1 - tan x tan y + tan x tan y = 2.
|
|||||||||