

InterviewSolution
Saved Bookmarks
1. |
If S is a point on side PQ of a `DeltaPQR` such that PS=QS=RS, thenA. `PRcdotQR=RS^(2)`B. `QS^(2)+RS^(2)=QR^(2)`C. `PR^(2)+QR^(2)=PQ^(2)`D. `PS^(2)+RS^(2)=PR^(2)` |
Answer» Given , in `DeltaPQR`, PS=QS=RS ….(i) In `DeltaPSR`, PS=RS [fromEq. (i)] `rArr angle1=angle2` ….(ii) Similarly, in `DeltaRSQ`, `rArr angle3=angle4` ….(iii) [corresponding angles of equal sides are equal] Now, in `DeltaPQR`, sum of angles=`180^(@)` `rArr angle P+angleQ+angleR=180^(@)` `rArrangle2+angle4+angle1+angle3=180^(@)` `rArrangle1+angle3+angle1+angle3=180^(@)` `rArr2(angle1+angle3)=180^(@)` `rarrangle1+angle3=(180^(@))/2=90^(@)` `therefore angleR=90^(@)` In `DeltaPQR`, by Pythagoras theorem, `PR^(2)+QR^(2)=PQ^(2)` |
|