1.

If S is the sum to infinity of a G.P. whose first term is 1, then the sum of its first n terms is(a) S\(\big(1-\frac{1}{S}\big)^{n-1}\)(b) S \(\big(1-\frac{1}{S}\big)^{n}\)(c) S\(\big\{1-\big(1-\frac{1}{S}\big)^{n-1}\big\}\)(d) S\(\big\{1-\big(1-\frac{1}{S}\big)^{n}\big\}\)

Answer»

(d) S\(\big\{1-\big(1-\frac{1}{S}\big)^{n}\big\}\)

Let the first term of the G.P. be a and common ratio r. 

Given S = \(\frac{a}{1-r}\) ⇒ S = \(\frac{1}{1-r}\)

⇒ 1 - r = \(\frac{1}{S}\) ⇒ r = 1 - \(\frac{1}{S}\)

Let Sn be the sum of first n terms of the series. Then,

Sn\(\frac{1(1-r^n)}{1-r}\)               (∵ | r | < 1)

\(\frac{1\big(1-\big(1-\frac{1}{S}\big)^n\big)}{\big(1-\big(1-\frac{1}{S}\big)\big)}\) =  S\(\big\{1-\big(1-\frac{1}{S}\big)^{n}\big\}\)



Discussion

No Comment Found