InterviewSolution
Saved Bookmarks
| 1. |
If \(sec\theta = \frac{a}{b},b \ne 0,then\frac{{1 - {{\tan }^2}\theta }}{{2 - {{\sin }^2}\theta }}\)=?1. \(\frac{{{b^2}\left( {2{b^2} - {a^2}} \right)}}{{{a^2}\left( {{a^2} + {b^2}} \right)}}\)2. \(\frac{{{b^2}\left( {2{b^2} + {a^2}} \right)}}{{{a^2}\left( {{a^2} + {b^2}} \right)}}\)3. \(\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\)4. \(\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{a^2}\left( {{a^2} - {b^2}} \right)}}\) |
|
Answer» Correct Answer - Option 3 : \(\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\) Given- secθ = a/b Concept Used- secθ = H/B, tanθ = P/B, sinθ = P/H and H2 = P2 + B2 [where H = hypotenuse, B = base and P = perpendicular] Calculation- According to Question - H/B = a/b P = √(a2 - b2), H = a and B = b tan2θ = (a2 - b2)/b2 sin2θ = (a2 - b2)/a2 (1 - tan2θ)/(2 - sin2θ) ⇒ {(2b2 - a2)/b2}/{(a2 + b2)/a2} \(\Rightarrow \frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\) ∴\(\frac{{1 - {{\tan }^2}\theta }}{{2 - {{\sin }^2}\theta }}=\frac{{{a^2}\left( {2{b^2} - {a^2}} \right)}}{{{b^2}\left( {{a^2} + {b^2}} \right)}}\) |
|