1.

If sin-1 (1 - x) - 2 sin-1 x = \(\frac{π}{2}\) then x is(A) \(-\frac{1}{2}\)(B) 1(C) 0(D) \(\frac{1}{2}\)

Answer»

(C)

sin-1 (1-x) -2 sin-1 x = \(\frac{π}{2}\)

Let x = sin θ

∴ sin-1 (1 - sin θ) - 2 sin-1 (sin θ) = \(\frac{π}{2}\)

∴ sin-1 (1 - sin θ) - 2θ = \(\frac{π}{2}\)

∴ sin-1 (1 - sin θ) = \(\frac{π}{2}\) + 20

∴ 1 - sin θ = sin (\(\frac{π}{2}\) + 20)

∴ 1 - sin θ = cos 2θ    ...[∵ sin (\(\frac{π}{2}\) + θ) = cons θ]

∴ 1 - sin θ = 1 -2sinθ

∴ 2sin2θ - sin θ = 0

∴ sin θ (2 sin θ - 1) = 0

∴ sin θ = 0 or sin θ = \(\frac{1}{2}\)

∴ x = 0 or x = \(\frac{1}{2}\)

For x = \(\frac{1}{2}\), sin-1 (1 - x) -2 sin-1 x = sin-1 (1 - \(\frac{1}{2}\)) - 2sin-1 (\(\frac{1}{2}\)

sin-1(\(\frac{1}{2}\)) - 2 sin-1(\(\frac{1}{2}\)) = - sin-1(\(\frac{1}{2}\)) = - \(\frac{π}{6} \) ≠  \(\frac{π}{2}\)

∴ x ≠ \(\frac{1}{2}\)

∴ x = 0



Discussion

No Comment Found

Related InterviewSolutions