InterviewSolution
Saved Bookmarks
| 1. |
If ` sin2A= lambda sin 2B` prove that `(tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)` |
|
Answer» Given `sin2A = lambda sin2B` `rArr (sin2A)/(sin2B) = lambda/1` Applying componendo and dividendo, `(sin2A+sin2B)/(sin2B-sin2A) = (lambda+1)/(1-lambda)` `rArr ((2sin(2A+2B)/(2))cos(2A-2B)/(2))/(2cos(2B+2A)/(2)sin(2B-2A)/(2)) = (lambda+1)/(1-lambda)` `rArr (sin(A+B)cos(A-B))/(cos(A+B)sin(-(A-B)))=(lambda+1)/(1-lambda) rArr (sin(A+B)cos(A-B))/(cos(A+B)x-sin(A-B)) = (lambda+1)/(-(lambda-1))` `rArr (sin(A+B)cos(A-B))(cos(A+B)sin(A-B))=(lambda+1)/(lambda-1) rArr tan(A+B) cot(A-B)=(lambda+1)/(lambda-1)` `rArr (tan(A+B))/(tan(A-B)) = (lambda+1)/(lambda-1)` |
|