 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If slopes of lines represented by `kx^(2)+5xy+y^(2)=0` differ by 1, then k=A. `2`B. 3C. 6D. 8 | 
| Answer» Correct Answer - C Given pair of lines be `kx^(2) +5xy +y^(2) = 0"…."(i)` On comparing Eq. (i) with `ax^(2) + 2hx +by^(2) = 0`, we get `a = k, b = 1` and `2h =5` Let `m_(1)` and `m_(2)` be two slopes of pair of lines. `:. m_(1) + m_(2) = (-2h)/(b) = -5` and `m_(1)m_(2) = (a)/(b) = k` Now, `(m_(1) - m_(2))^(2) = (m_(1) + m_(2))^(2) - 4m_(1)m_(2)` `rArr (1)^(2) = (-5)^(2) - 4 k` [given, `m_(1) - m_(2) = 1` or `m_(2) - m_(1) = 1` ] `rArr 1 = 25 - 4k` `rArr 4k = 24 rArr k = 6` | |