1.

If sum of square of zeros of quadratic equation f(x) = x2 – 8x + k is 40 then find the value of k.

Answer»

Given polynomial f(x) = x2 – 8x + k

Let α and β are zeros of polynomial f(x) then

Sum of zero (α + β) = - b/a

= -(-8)/1 = 8  ....(i)

and product of zeros

(α x β) = c/a = k/1 = k  ....(ii)

Now, from equation (i)

(α + β) = 8

Squaring both sides,

(α + β)2 = 82

⇒ a2 + β2 + 2αβ = 64 …(iii)

It is given that sum of square of zeros is 40.

i.e., α2 + β2 = 40

Putting values from equation (i) and (ii) in (iii)

40 + 2k = 64

⇒ 2k = 64 – 40

⇒ 2k = 24

⇒ k = 12

Thus k = 12



Discussion

No Comment Found