1.

If `sum_(r=0)^(2n)(-1)^r(2n(C_r)^2=alpha_1`, then `sum_(r=0)^(2n)(-1)^r(r-2n)(2n(C_r)^2=`A. `nalpha`B. `-n alpha `C. `0D. none of these

Answer» Correct Answer - b
Let `beta = sum_(r=0)^(2n) (-1)^(r) (r -2n)(""^(2n)C_(r))^(2)` …(i)
`rArr beta = - sum_(r=0)^(2n) (-1)^(r) (2n -r) (""^(2n)C_(2n-r))^(2)`
Writing the terms in the neverse order, we get
`beta = sum_(r=0)^(2n) (-1)^(r) r(""^(2n)C_(r))^(2) ` ...(ii)
Adding (i) and (ii), we get
`2beta = - sum_(r=0)^(2n) (-1)^(r) (""^(2n)C_(r))^(2)`
`rArr 2 beta = - 2n sum_(r=0)^(2n) (-1)^(r) (""^(2n)C_(r))^(2)`
`rArr 2 beta = - 2nalpha rArr beta = - n alpha ` .


Discussion

No Comment Found

Related InterviewSolutions