1.

If `t_(1)` is the rth term in the expansion of `(1+x)^(101)`, then what is the rato `(t_(20))/(t_(19))` equal to ?A. `(20x)/(19)`B. 83xC. 19xD. `(83x)/(19)`

Answer» Correct Answer - D
We find `r_(n)` term :
`t_(r)` is the rth term in the expansion of `(1+x)^(101).`
`t_(r)=""^(101)C_(r-1).(x)^((r-1))`
`therefore(t_(20))/(t_(19))=(""^(101)C_(19))/(""^(101)C_(18)).(x^(19))/(x^(18))=(""^(101)C_(19)x)/(""^(101)C_(18))" "=((101!)/(19!82!))/((101!)/(18!83!))x=(83x)/(19)`


Discussion

No Comment Found