InterviewSolution
Saved Bookmarks
| 1. |
If tan θ + sin θ = m and tan θ – sin θ = n, then prove that m2 – n2 = 4 sin θ tan θ[Hint: m + n = 2tanθ, m – n = 2 sin θ, then use m2 – n2 = (m + n)(m – n)] |
|
Answer» According to the question, tan θ + sin θ = m …(i) tan θ – sin θ = n …(ii) Adding equation i and ii, 2 tan θ = m + n …(iii) Subtracting equation ii from i, We get, 2sin θ = m – n …(iv) Multiplying equations (iii) and (iv), 2sin θ (2tan θ) = (m + n)(m – n) ⇒ 4 sin θ tan θ = m2 – n2 Hence, m2 – n2 = 4 sin θ tan θ |
|