1.

If tantheta(P)/(q)"where"p,qgt0and if thetain(0,(pi)/(4))then sqrt((q+p)/(q-p))+sqrt((q-p)/(q+p)) is equal to

Answer»

`(2sintheta)/(sqrt(sin2theta))`
`(2sintheta)/(sqrt(COS2THETA))`
`(2costheta)/(sqrt(cos2theta))`
`(2costheta)/(sqrt(cos2theta))`

Solution :`sqrt((q+p)/(q-p))+sqrt((q-p)/(q+p))=sqrt((1+p//q)/(1-p//q))+sqrt((1-p//q)/(1+p//q))`
`=((1+p//q)+(1-p//q))/(sqrt(1-(p//q)^(2)))=(2)/(sqrt(1-tan^(2)THETA))=(2cos theta)/(sqrt(COS2 theta)).`


Discussion

No Comment Found

Related InterviewSolutions