| 1. |
If θ = sin-1{sin(-600°)}, then one of the possible values of θ isA. \(\frac{\pi}3\)B.\(\frac{\pi}2\)C. \(\frac{2\pi}3\)D. \(-\frac{2\pi}3\) |
|
Answer» Correct option is A.\(\frac{\pi}3\) We are given that, θ = sin-1{sin (-600°)} We know that, sin (2π – θ) = sin (4π – θ) = sin (6π – θ) = sin (8π – θ) = … = -sin θ As, sin (2π – θ), sin (4π – θ), sin (6π – θ), … all lie in IV Quadrant where sine function is negative. So, If we replace θ by 600°, then we can write as sin (4π – 600°) = -sin 600° Or, sin (4π – 600°) = sin (-600°) Or, sin (720° – 600°) = sin (-600°) …(i) [∵, 4π = 4 × 180° = 720° < 600°] Thus, we have θ = sin-1{sin (-600°)} ⇒ θ = sin-1 {sin (720° – 600°)} [from equation (i)] ⇒ θ = sin-1 {sin 120°} …(ii) We know that, sin (π – θ) = sin (3π – θ) = sin (5π – θ) = … = sin θ As, sin (π – θ), sin (3π – θ), sin (5π – θ), … all lie in II Quadrant where sine function is positive. So, If we replace θ by 120°, then we can write as sin (π – 120°) = sin 120° Or, sin (180° - 120°) = sin 120° …(iii) [∵, π = 180° < 120°] Thus, from equation (ii), θ = sin-1{sin 120°} ⇒ θ = sin-1{sin (180° - 120°)} [from equation (iii)] ⇒ θ = sin-1 {sin 60°} Using property of inverse trigonometry, sin-1(sin A) = A ⇒ θ = 60° ⇒ θ = 60° ⇒ θ = \(\frac{\pi}3\) |
|