

InterviewSolution
Saved Bookmarks
1. |
If the `4^(th)` term of `{sqrt(x^((1)/(1+log_(10)x)))+root(12)(x)}^(6)` is equal to `200`, `x gt 1`and the logarithm is common logarithm, then`x` is not divisible byA. `2`B. `5`C. `10`D. `4` |
Answer» Correct Answer - D `(d)` Given expression is `{sqrt((1)/(x^(1+log_(10)x)))+root12x}^(6)={x^((1)/(2))((1)/(1+log_(10x)))+x^((1)/(12))}^(6)` `T_(4)=200` `implies^(6)C_(3)*x^((1)/(2)((1)/(1+log_(10)x))^(6-3))xx(x^((1)/(12)))^(3)=200` `impliesx^((3)/(2)(1)/(1+log_(10)x)+(1)/(4))=10` `=(3)/(2(1+log_(10)x))+(1)/(4)=log_(x)10` `implies(3)/(2(1+log_(10)x))+(1)/(4)=(1)/(log_(10)x)` Put `log_(10)x=y` `implies(3)/(2(1+y))+(1)/(4)=(1)/(y)` `impliesy^(2)+3y-4=0` `impliesy=-4`, `y=1` `implieslog_(10)x=-4`, `log_(10)x=1` `impliesx=10` (as `x gt 1`) |
|