1.

Find the value of `1/(81^n)-(10)/(81^n)^(2n)C_1+(10^2)/(81^n)^(2n)C_2-(10^3)/(81^n)^(2n)C_3++(10^(2n))/(81^n)`.

Answer» Correct Answer - `1`
We have
`(1)/(81^(n)) - (10)/(81^(n)).^(2n)C_(1)+(10^(2))/(81^(n)).^(2n)C_(2)- (10^(3))/(81^(n)) .^(2n)C_(3)+"……."+(10^(2n))/(81^(n))`
`= 1/(81^(n))[.^(2n)C_(0) - .^(2n)C_(1)10^(1) + .^(2n)C_(2)10^(2)-.^(2n)C_(3)10^(3)+"……"+.^(2n)C_(2n)10^(2n)]`
`= (1)/(81^(n))[1-10]^(2n)`
`= ((-9)^(2n))/(81^(n))= (81^(n))/(81^(n)) = 1`


Discussion

No Comment Found

Related InterviewSolutions