1.

If the area of the bounded region R={(x,y):max{0,logex}≤y≤2x,12≤x≤2} is, α(loge2)−1+β(loge2)+γ, then the value of (α+β−2γ)2 is equal to

Answer»

If the area of the bounded region

R={(x,y):max{0,logex}y2x,12x2} is, α(loge2)1+β(loge2)+γ, then the value of (α+β2γ)2 is equal to



Discussion

No Comment Found