1.

If the areas of three consecutive faces of a cuboid are 12 cm2, 20 cm2, and 60 cm2, then the volume (in cm3) of the cuboid is1.  120 cm32.  60 cm33.  150 cm34.  180 cm3

Answer» Correct Answer - Option 1 :  120 cm3

Given:

The areas of three consecutive faces of a cuboid are 12 cm2, 20 cm2, and 60 cm2.

Formula used:

The volume of cuboid = l × b × h

Where l → length

b → breadth

h → height

Calculations:

Let the length, breadth, and height of the cuboid be x, y, and z respectively.

Then xy = 12 cm2, yz = 20 cm2, and zx = 60 cm2 

By multiplying these three we'll get

xy × yz × zx = 12 × 20 × 60

⇒ x2y2z2 = 14400

⇒ (xyz)2 = 14400

⇒ xyz = 120 and –120, (Rejecting the negative term as volume cannot be negative)

Volume of cuboid = l × b × h = xyz

Thus xyz = 120 cm3

∴ The volume of the cuboid is 120 cm3.



Discussion

No Comment Found

Related InterviewSolutions