1.

If the circles x2 + y2 + 2x + 2ky + 6 = 0 and x2 + y2 + 2ky + k = 0 intersect orthogonaly then k is(a)  2 or –3/2(b)  –2 or –3/2(c)  2 or 3/2(d)  – 2 or 3/2 

Answer»

Correct option  (a)  2 or –3/2

Explanation:

Condition for two circles to intersect at right angles is 2g1 g2 + 2f1 f2 = c1 + c2

Here two circles are x+ y+ 2x + 2ky + 6 = 0

and  x+ y+ 2ky + k = 0

g1 = 1, f1 = k c1 = 6

g2 = 0 f2 = k c2 = k

0 + 2k2 = 6 + k

2k– k – 6 = 0

2k– 4k + 3k – 6 = 0

(2k + 3) (k – 2) = 0

k = –3/2 or k = 2



Discussion

No Comment Found

Related InterviewSolutions