InterviewSolution
Saved Bookmarks
| 1. |
If the ellipse x^(2)+k^(2)y^(2)=k^(2)a^(2) is confocal with the hyperbola x^(2)-y^(2)=a^(2), then match the following lists and choose the correct code. |
|
Answer» and Focus of hyperbola `-=(ae_(2),0)` Now, `kae_(1)=ae_(2)` `rArr""sqrt(1-(a^(2))/(k^(2)a^(2)))=sqrt(1+(a^(2))/(a^(2)))` `rArr""k^(2)-1=2` `therefore""k= pmsqrt3` a. `(e_(2))/(e_(1))=k=SQRT3` ltBrgt b. Major axis of ellipse = 2ka and Transverse axis of hyperbola = 2A `therefore""(2ka)/(2a)=k=sqrt3` C. Since curves are confocal, they are orthogonal. `therefore""theta=(pi)/(2)` d. Latus rectum of ellipse and hyperbola are`(2a^(2))/(ak) and (2a^(2))/(a)`, respectively. `therefore""(2a//k)/(2a)=(1)/(k)=(1)/(sqrt3)` |
|