InterviewSolution
Saved Bookmarks
| 1. |
If the equation `(1+m^2)x^2+2m c x+(c^2-a^2)=0`has equal roots, prove that `c^2=a^2(1+m^2)dot` |
|
Answer» We have, `(1+m^(2))x^(2)+2mcx+(c^(2)-a^(2))=0` It has equal roots, if D=0 `impliesB^(2)-4AC=0` `implies(2mc)^(2)-4(1+m^(2))(c^(2)-a^(2))=0` `implies4m^(2)c^(2)-4(c^(2)-a^(2)+m^(2)c^(2)-m^(2)a^(2))=0` `impliesm^(2)c^(2)-c^(2)+a^(2)-m^(2)c^(2)+m^(2)a^(2)=0` `impliesc^(2)=a^(2)+m^(2)a^(2)=a^(2)(1+m^(2))` |
|