InterviewSolution
Saved Bookmarks
| 1. |
If the equation `4y^(3) - 8a^(2)yx^(2) - 3ay^(2)x +8x^(3) = 0` represents three straight lines, two of them are perpendicular, then sum of all possible values of a is equal toA. `(3)/(8)`B. `(-3)/(4)`C. `(1)/(4)`D. `-2` |
|
Answer» Correct Answer - B We have `4y^(3) -8a^(2)yx^(2) - 3ay^(2)x +8x^(3) =0` `rArr 4 ((y)/(x))^(3) -3a ((y)/(x))^(2) -8a^(2) ((y)/(x)) +8 =0` has roots `m_(1),m_(2),m_(3)` `:. m_(1)m_(2)m_(3) =- 2` Given `m_(1)m_(2) =-1` `:. m_(3)=2` `:. 4(2)^(3)-3a(2)^(2) -8a^(2)(2) +8 =0` `rArr 4a^(2) +3a - 10 =0` `:.` Sum of possible values of roots `=(-3)/(4)` |
|