

InterviewSolution
Saved Bookmarks
1. |
If the equation for the displacement of a particle moving on a circle path is given by, theta = 2t^(2)+0.5 where, theta is in radian and t is in second, then the angular velocity of the particle after 2 s is |
Answer» <html><body><p>`8 rad s^(-1)`<br/>`<a href="https://interviewquestions.tuteehub.com/tag/12-269062" style="font-weight:bold;" target="_blank" title="Click to know more about 12">12</a> rad s^(-1)`<br/>`24 rad s^(-1)`<br/>`36 rad s^(-1)`</p>Solution :Angular <a href="https://interviewquestions.tuteehub.com/tag/velocity-1444512" style="font-weight:bold;" target="_blank" title="Click to know more about VELOCITY">VELOCITY</a>, `<a href="https://interviewquestions.tuteehub.com/tag/omega-585625" style="font-weight:bold;" target="_blank" title="Click to know more about OMEGA">OMEGA</a>=(d theta)/(<a href="https://interviewquestions.tuteehub.com/tag/dt-960413" style="font-weight:bold;" target="_blank" title="Click to know more about DT">DT</a>)=6t^(<a href="https://interviewquestions.tuteehub.com/tag/2-283658" style="font-weight:bold;" target="_blank" title="Click to know more about 2">2</a>)`, At `t=2s` <br/> `omega = 6(2)^(2)=24 "rads"^(-1)`.</body></html> | |