InterviewSolution
Saved Bookmarks
| 1. |
If the equation of the plane through the line of interesection of `vecr.(2hati-3hatj+hatk)=1` and `vecr.(hati-hatj)+4=0` and perpendicular to `vecr.(2hati+hatj+hatk)+8=0` is `vecr.(5hati-2hatj-12hatk)=lamda` Then `lamda=`A. 47B. -47C. 37D. -37 |
|
Answer» Correct Answer - A The equation of any plane through the line of intersection of the given planes is `[vecr.(2hati-3hatj+4hatk)-1]+lamda[vecr.(hati-hatj)+4]=0` `impliesvecr.[(2+lamda)hati-(3+lamda)hatj+4hatk]=1-4lamda`…………..i If i is perpendicular to `vecr.(2hati-hatj+hatk)+8=0` then `[(2+lamda)hati-(3+lamda)hatj+4hatk].(2hati-hatj+hatk)=0` `implies2(2+lamda)+(3+lamda)+4=0implieslamda=-11//3` Putting `lamda=-11//3` in i we obtain the equation of the required plane as `vecr.(-5hati+2hatj+12hatk)=47` Hence `lamda=47`. |
|