1.

If the length of each side of a regular tetrahedron is 12 cm, then the volume of the tetrahedron is(a) 144 \(\sqrt{2}\) cu. cm (b) 72\(\sqrt{2}\) cu. cm (c) 8 \(\sqrt{2}\) cu. cm (d) 12 \(\sqrt{2}\) cu. cm

Answer»

Answer: (a) = 144\(​​\sqrt{2}\)  cu.cm.  

Volume of a regular tetrahedron = \(\frac{\sqrt{2}}{12} (edge)^3\)  

\(\frac{\sqrt{2}}{12} (12)^3\) 

= 144 \(​​\sqrt{2}\)  cu.cm.



Discussion

No Comment Found