InterviewSolution
Saved Bookmarks
| 1. |
If the line `l x+m y+n=0`touches the parabola `y^2=4a x ,`prove that `ln=a m^2` |
|
Answer» True Given equation of a line is lx+my+n=0 and parabola`y^(2)`=4ax From Eq. (i), x=`-((my+n)/l)`put in Eq. (ii) we get `y^(2)=-(4a(my+n))/l` `rArr ly^(2)=-4amy-4ax` `rArrly^(2)+3amy+4an=0` For tangent, D=0 `rArr16a^(2)m^(2)=4lxx4an` `rArr 16a^(2)m^(2)=16anl` `rArr am^(2)=nl` |
|