

InterviewSolution
Saved Bookmarks
1. |
If the points `((a^3)/(a-1),(a^2-3)/(a-1)),((b^3)/(b-1),(b^3-3)/(b-1))a n d((c^3)/(c-1),(c^3-3)/(c-1))`where `a , b ,c`are different from 1 lieon the line `l x+m y+n=0``a+b+c=-m/l``a b+b c+c a+n/l=0``a b c=((3m+n))/l``a b c-(b c+c a+a b)+3(a+b+c)=0`A. `a+b+c = -(m)/(l)`B. `ab+bc+ca=(n)/(l)`C. `abc = ((m+n))/(l)`D. abc-(bc+ca+ab) +3(a+b+c)=0 |
Answer» Correct Answer - A::B::D Since the given points lie on the line lx+my+n=0, a,b,c are the roots of the equation `l((t^(3))/(t-1)) + m((t^(3)-3)/(t-1))+n=0` `"or " l t^(3) +mt^(2) + nt-(3m+n) = 0 " " (1)` `"Hence, "a+b+c = -(m)/(l)` `ab+bc+ca = (n)/(l)" " (2)` `abc = (3m+n)/(l) " " (3)` So, from (1), (2), and (3), we get abc-(bc+ca+ab)+3(a+b+c)=0` |
|