1.

If the production function is z = 3x2 – 4xy + 3y2 where x is the labour and y is the capital, find the marginal productivities of x and y when x = 1, y = 2.

Answer»

Marginal productivity of labour, \(\frac{∂z}{∂x}\) = 6x – 4y

Marginal productivity of labour when x = 1, y = 2 is

\((\frac{∂z}{∂x})_{(1,2)}\) = 6(1) – 4(1) 

= 6 – 4 

= 2 

Marginal productivity of capital, \(\frac{∂z}{∂y}\) = 0 – 4x(1) + 3(2y) 

= -4x + 6y

Marginal productivity of capital when x = 1, y = 2 is

\((\frac{∂z}{∂y})_{(1,2)}\) = -4(1) + 6(2) 

= -4 + 12 

= 8



Discussion

No Comment Found